Bioactive Compounds and Total Sugar Contents of Different Open-Pollinated Beetroot Genotypes Grown Organically

Author:

Yasaminshirazi Khadijeh,Hartung Jens,Fleck Michael,Graeff-Hoenninger SimoneORCID

Abstract

The growing interest of consumers in healthy organic products has increased the attention to the organic production of beetroot. In this regard, six field experiments were conducted in 2017 and 2018 in three different locations under the specific conditions of organic agriculture, and fifteen beetroot genotypes, including one F1 hybrid as a commercial control and one breeding line, were compared regarding the content of the total dry matter, total soluble sugar, nitrate, betalain, and total phenolic compounds in order to investigate the genetic potential of new and existing open-pollinated genotypes of beetroot regarding the content of their bioactive compounds. The results of this study indicated a significant impact of genotype (p < 0.05) on all measured compounds. Furthermore, results revealed a significant influence of the interactions of location × year (p < 0.05) on the beetroot composition, and, thus, the role of environmental conditions for the formation of tested compounds. The total dry matter content (TDMC) of beetroots varied between 14.12% and 17.50%. The genotype ‘Nochowski’, which possessed the highest total soluble sugar content with 14.67 °Bx (Brix), was among the genotypes with the lowest nitrate content. On the contrary, the cylindrical-shaped genotype ‘Carillon RZ’ (Rijk Zwaan), indicated the lowest sugar content and the highest nitrate concentration. The amount of total phenolic compounds ranged between 352.46 ± 28.24 mg GAE 100 g−1 DW (milligrams of gallic acid equivalents per 100 g of dry weight) and 489.06 ± 28.24 mg GAE 100 g−1 DW for the red-colored genotypes which is correlated with the high antioxidant capacity of the investigated genotypes. Due to the specifics of the required content of bioactive compounds for various products, the selection of suitable genotypes should be aligned with the intended final utilization.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3