Supplementation of SDF1 during Pig Oocyte In Vitro Maturation Improves Subsequent Embryo Development

Author:

Zhao Huaxing,Dong Yazheng,Zhang Yuxing,Wu Xiao,Zhang Xianjun,Liang Yalin,Li Yanan,Zeng Fang,Shi Junsong,Zhou Rong,Hong LinjunORCID,Cai Gengyuan,Wu Zhenfang,Li Zicong

Abstract

The quality of in vitro matured oocytes is inferior to that of in vivo matured oocytes, which translates to low developmental capacity of embryos derived from in vitro matured oocytes. The developmental potential of in vitro matured oocytes is usually impaired due to oxidative stress. Stromal cell-derived factor-l (SDF1) can reduce oxidative stress and inhibit apoptosis. The aim of this study was to investigate the effects of SDF1 supplementation during pig oocyte in vitro maturation (IVM) on subsequent embryo development, and to explore the acting mechanisms of SDF1 in pig oocytes. We found that the IVM medium containing 20 ng/mL SDF1 improved the maturation rate of pig oocytes, as well as the cleavage rate and blastocyst rate of embryos generated by somatic cell nuclear transfer, in vitro fertilization, and parthenogenesis. Supplementation of 20 ng/mL SDF1 during IVM decreased the ROS level, increased the mitochondrial membrane potential, and altered the expression of apoptosis-related genes in the pig oocytes. The porcine oocyte transcriptomic data showed that SDF1 addition during IVM altered the expression of genes enriched in the purine metabolism and TNF signaling pathways. SDF1 supplementation during pig oocyte IVM also upregulated the mRNA and protein levels of YY1 and TET1, two critical factors for oocyte development. In conclusion, supplementation of SDF1 during pig oocyte IVM reduces oxidative stress, changes expression of genes involved in regulating apoptosis and oocyte growth, and enhances the ability of in vitro matured pig oocytes to support subsequent embryo development. Our findings provide a theoretical basis and a new method for improving the developmental potential of pig in vitro matured oocytes.

Funder

Department of Science and Technology of Guangdong Province, China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3