Supplementation of rapamycin during in vitro maturation promotes oocyte quality and subsequent embryo development in bovine

Author:

Khatun HafizaORCID,Islam Md Rasadul,Khan Muckta,Sultana Fowzia

Abstract

Abstract Background The developmental competence of oocyte derived from in vitro maturation (IVM) is significantly lower than those of oocyte matured in vivo. Rapamycin is an immunosuppressive substance and widely used to prolong the survival and preserve the cells culture. The objective of this research was to explore whether rapamycin supplementation during IVM enhances meiotic maturation, oocyte quality, and subsequent embryonic development. Methods Depending on the purpose, bovine cumulus oocyte complexes were matured without (control) or with rapamycin at different concentrations (0, 1, 10, and 100 nM) for 22 h (h) followed by 6 h in vitro fertilization, and zygotes were cultured for 8 days. Following treatment, oocytes developmental competence was assessed by meiotic progression, intra-oocyte GSH synthesis, reactive oxygen species (ROS) levels, and subsequent embryonic development. Results The results showed that addition of 1 nM rapamycin to IVM medium significantly increased the nuclear maturation (90.1 ± 1.5 vs. 81.2 ± 2.5; P < 0.01) and subsequent embryonic development (47.6 ± 2.2 vs. 41.5 ± 1.9; P < 0.05) than that observed in the control group. Consequently, compared to the control group, the relative fluorescence’s intensity of ROS levels in oocyte significantly reduced by rapamycin treatment. More importantly, rapamycin supplementation during maturation significantly increased the reduced glutathione synthesis levels in oocyte compared to that observed in control, indicating the bidirectional communication between cumulus cells and oocyte becomes easy via rapamycin treatment. Conclusions This study suggests that the presence of rapamycin during maturation can afford to enhance reduced glutathione synthesized by the oocyte, which is an internal oocyte antioxidant defense and contributes to improve subsequent high-quality embryo production.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3