Extraction of Vanillin Following Bioconversion of Rice Straw and Its Optimization by Response Surface Methodology

Author:

Nurika IrniaORCID,Suhartini SriORCID,Azizah Nurul,Barker Guy C.ORCID

Abstract

Value-added chemicals, including phenolic compounds, can be generated through lignocellulosic biomass conversion via either biological or chemical pretreatment. Currently vanillin is one of the most valuable of these products that has been shown to be extractable on an industrial scale. This study demonstrates the potential of using rice straw inoculated with Serpula lacrymans, which produced a mixture of high value bio-based compounds including vanillin. Key extraction conditions were identified to be the volume of solvent used and extraction time, which were optimized using response surface methodology (RSM). The vanillin compounds extracted from rice straw solid state fermentation (SSF) was confirmed through LC-ESI MS/MS in selective ion mode. The optimum concentration and yield differed depending on the solvent, which was predicted using 60 mL ethyl acetate for 160 min were 0.408% and 3.957 μg g−1 respectively. In comparison, when ethanol was used, the highest concentration and yields of vanillin were 0.165% and 2.596 μg g−1. These were achieved using 40 mL of solvent, and extraction time increased to 248 min. The results confirm that fungal conversion of rice straw to vanillin could consequently offer a cost-effect alternative to other modes of production.

Funder

Kementerian Riset Teknologi Dan Pendidikan Tinggi Republik Indonesia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3