Methylation of Cyanidin-3-O-Glucoside with Dimethyl Carbonate

Author:

Straßmann Sarah,Brehmer Tillman,Passon MaikeORCID,Schieber AndreasORCID

Abstract

The approach presented in this study is the first for the hemisynthesis of methylated anthocyanins. It was possible to obtain cyanidin-3-O-glucoside derivatives with different degrees of methylation. Cautious identification of 4′-, 5-, and 7-OH monomethylated derivatives was also accomplished. The methylation agent used was the “green chemical” dimethyl carbonate (DMC), which is characterized by low human and ecological toxicity. The influence of the temperature, reaction time, and amount of the required diazabicyclo[5.4.0]undec-7-en (DBU) catalyst on the formation of the products was examined. Compared to conventional synthesis methods for methylated flavonoids using DMC and DBU, the conditions identified in this study result in a reduction of reaction time, and an important side reaction, so-called carboxymethylation, was minimized by using higher amounts of catalyst.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semisynthesis of anthocyanins;Semisynthesis of Bioactive Compounds and their Biological Activities;2024

2. Progress on molecular modification and functional applications of anthocyanins;Critical Reviews in Food Science and Nutrition;2023-07-24

3. Anthocyanins: Dietary Sources, Bioavailability, Human Metabolic Pathways, and Potential Anti-Neuroinflammatory Activity;Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications;2022-02-23

4. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment;Cancers;2021-12-01

5. Extraction optimisation, hydrolysis, antioxidant properties and bioaccessibility of phenolic compounds in Natal plum fruit (Carissa Macrocarpa);Food Bioscience;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3