Preparation of Cellulose/Chitin Blend Materials and Influence of Their Properties on Sorption of Heavy Metals

Author:

Zhou Dao,Wang Hongyu,Guo ShenglianORCID

Abstract

A series of biodegradable cellulose/chitin materials (beads and membranes) were successfully prepared by mixing cellulose with chitin in an NaOH/thiourea–water system and coagulation in a H2SO4 solution. The effects of chitin content on the materials’ mechanical properties, morphology, structure, and sorption ability for heavy metal ions (Pb2+, Cd2+, and Cu2+) were studied by tensile tests, scanning electron micrographs, Fourier transform infrared spectroscopy, and atomic absorption spectrophotometry. The results revealed that the cellulose/chitin blends exhibited relatively good mechanical properties, a homogeneous, microporous mesh structure, and the existence of strong hydrogen bonds between molecules of cellulose and chitin when the chitin content was less than 30 wt%, which indicated a good compatibility of the cellulose/chitin materials. Furthermore, in the same chitin content range, Pb2+, Cd2+, and Cu2+ can be adsorbed efficiently onto the cellulose/chitin beads at pH0 = 5, and the sorption capacity of the beads is more than that of chitin flakes. This shows that the hydrophilicity and microporous mesh structure of the blends are favorable for the kinetics of sorption. Preparation of environmentally friendly cellulose/chitin blend materials provides a simple and economical way to remove and recover heavy metals, showing a potential application of chitin as a functional material.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3