The Development of a Fully Renewable Lubricant: The Effect of Ethyl Cellulose on the Properties of a Polyhydroxyalkanoate (P34HB)-Based Grease

Author:

Yang Shanshan12,Lai Bingbing13,Liu Zongzhu2,Lou Wenjing13ORCID

Affiliation:

1. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

2. College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China

3. Qingdao Key Laboratory of Lubrication Technology for Advanced Equipment, Qingdao Center of Resource Chmesity & New Materials, Qingdao 266100, China

Abstract

In the context of the ongoing evolution of the global economy and increasing environmental awareness, green sustainable development has emerged as a crucial pathway for future advancements in the lubrication industry. In this study, we prepared bio-based greases by employing a thickener system consisting of polyhydroxyalkanoate (P34HB) and ethyl cellulose, with castor oil serving as a base oil. The results indicate that ethyl cellulose significantly and effectively enhances the grease system’s mechanical and colloidal stability. Notably, the addition of 5 wt% ethyl cellulose leads to superior mechanical and colloidal stability, while increasing concentrations gradually result in rheological properties similar to those of oleogels. Furthermore, the wear volume of grease containing 5 wt% ethyl cellulose was reduced by 39.20% compared to that of a reference P34HB grease, demonstrating its exceptional wear resistance. The present study provides a theoretical foundation and empirical evidence for the future development of biodegradable greases as substitutes for non-degradable materials, thereby expanding the range of environmentally friendly greases formulated with biomass-based thickeners.

Funder

Key Research and Development Program of Shandong Province

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3