Power Pylon Reconstruction Based on Abstract Template Structures Using Airborne LiDAR Data

Author:

Chen Shichao,Wang Cheng,Dai Huayang,Zhang Hebing,Pan FeifeiORCID,Xi XiaohuanORCID,Yan Yueguan,Wang Pu,Yang Xuebo,Zhu Xiaoxiao,Aben Ardana

Abstract

As an important power facility for transmission corridors, automatic three-dimensional (3D) reconstruction of the pylon plays an important role in the development of smart grid. In this study, a novel three-dimensional reconstruction method using airborne LiDAR (Light Detection And Ranging) point cloud is developed and tested. First, a principal component analysis (PCA) algorithm is performed for pylon redirection based on the structural feature of the upper part of a pylon. Then, based on the structural similarity of a pylon, a pylon is divided into three parts that are inverted triangular pyramid lower structures, quadrangular frustum pyramid middle structures, and complex upper or lateral structures. The reconstruction of the inverted triangular pyramid structures and quadrangular frustum pyramid structures is based on prior knowledge and a data-driven strategy, where the 2D alpha shape algorithm is used to obtain contour points and 2D linear fitting is carried out based on the random sample consensus (RANSAC) method. Complex structures’ reconstruction is based on the priori abstract template structure and a data-driven strategy, where the abstract template structure is used to determine the topological relationship among corner points and the image processing method is used to extract corner points of the abstract template structure. The main advantages in the proposed method include: (1) Improving the accuracy of the pylon decomposition method through introducing a new feature to identify segmentation positions; (2) performing the internal structure of quadrangular frustum pyramids reconstruction; (3) establishing the abstract template structure and using image processing methods to improve computational efficiency of pylon reconstruction. Eight types of pylons are tested in this study, and the average error of pylon reconstruction is 0.32 m and the average of computational time is 0.8 s. These results provide evidence that the pylon reconstruction method developed in this study has high accuracy, efficiency, and applicability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3