Systematic Comparison of Power Line Classification Methods from ALS and MLS Point Cloud Data

Author:

Wang Yanjun,Chen Qi,Liu Lin,Li Xiong,Sangaiah Arun KumarORCID,Li Kai

Abstract

Power lines classification is important for electric power management and geographical objects extraction using LiDAR (light detection and ranging) point cloud data. Many supervised classification approaches have been introduced for the extraction of features such as ground, trees, and buildings, and several studies have been conducted to evaluate the framework and performance of such supervised classification methods in power lines applications. However, these studies did not systematically investigate all of the relevant factors affecting the classification results, including the segmentation scale, feature selection, classifier variety, and scene complexity. In this study, we examined these factors systematically using airborne laser scanning and mobile laser scanning point cloud data. Our results indicated that random forest and neural network were highly suitable for power lines classification in forest, suburban, and urban areas in terms of the precision, recall, and quality rates of the classification results. In contrast to some previous studies, random forest yielded the best results, while Naïve Bayes was the worst classifier in most cases. Random forest was the more robust classifier with or without feature selection for various LiDAR point cloud data. Furthermore, the classification accuracies were directly related to the selection of the local neighborhood, classifier, and feature set. Finally, it was suggested that random forest should be considered in most cases for power line classification.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3