An enhanced descriptor extraction algorithm for power line detection from point clouds

Author:

Shokri Danesh1ORCID,Rastiveis Heidar12ORCID,Sarasua Wayne A.3ORCID,Homayouni Saeid4ORCID,Hosseiny Benyamin1ORCID,Shams Alireza5ORCID

Affiliation:

1. Department of Photogrammetry and Remote Sensing, School of Surveying and Geospatial Engineering, College of Engineering University of Tehran Tehran Iran

2. Lyles School of Civil Engineering Purdue University West Lafayette Indiana USA

3. Glenn Department of Civil Engineering Clemson University Clemson South Carolina USA

4. Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS) Quebec Quebec Canada

5. Department of Environmental and Civil Engineering Mercer University Macon Georgia USA

Abstract

AbstractMobile terrestrial laser scanning (MTLS) systems provide a safe and efficient means to survey roadway corridors at high speed. MTLS point clouds are rich in planimetric data. However, manual extraction of useful information from these point clouds can be time consuming and laborious and automated object extraction from MTLS point clouds has become a hot topic in the remote sensing community. This study proposes an automated method for power line extraction from MTLS point clouds based on a multilayer perceptron (MLP) neural network. The proposed method consists of three main steps: (i) point cloud preprocessing, (ii) descriptor extraction and selection, and (iii) point classification. The preprocessing step involves filtering out more than 90% of the point cloud by eliminating the vast majority of unneeded points. Next, various descriptors are extracted from the remaining points including planarity, linearity, and verticality, and the descriptor standard deviation is used to select the best‐suited descriptors for power line extraction. Finally, an MLP neural network is trained using the selected descriptors from several cable and noncable sample points. The proposed algorithm was evaluated in three MTLS point clouds in urban and nonurban environments totalling 5.5 kilometres in length. An average precision of 94% and a recall of 94% showed the algorithm’s reliability and feasibility.

Publisher

Wiley

Subject

Earth-Surface Processes,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emergent landscapes of research publishing;Geographical Research;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3