Extraction of Power Line Pylons and Wires Using Airborne LiDAR Data at Different Height Levels

Author:

Awrangjeb MohammadORCID

Abstract

High density airborne point cloud data have become an important means for modelling and maintenance of power line corridors (PLCs). As the amount of data in a dense point cloud is large, even in a small area, automatic detection of pylon locations can offer a significant advantage by reducing the number of points that need to be processed in subsequent steps, i.e., the extraction of individual pylons and wires. However, the existing solutions mostly overlook this advantage by processing all of the available data at one time, which hinders their application to large datasets. Moreover, the presence of high vegetation and hilly terrain may challenge many of the existing methods, since vertically overlapping objects (e.g., trees and wires) may not be effectively segmented using a single height threshold. For extraction of pylons and wires, this paper proposes a novel approach which involves converting the input points at different height levels into binary masks. Long straight lines are extracted from these masks and convex hulls around the lines at individual height levels are used to form series of hulls across the height levels. The series of hulls are then projected onto a horizontal plane to form individual corridors. A number of height gaps, where there are no objects between the vegetation and the bottom-most wire, are then estimated. The height gaps along with the height levels consider the presence of hilly terrain as well as high vegetation within the PLCs. By using only the non-ground points within the extracted corridors and height gaps, the pylons are detected. The estimated height gaps are further exploited to define robust seed regions for the detected pylons. The seed regions thereafter are grown to extract the complete pylons. Finally, only the points between the locations of two successive pylons are used to extract points of individual wires. It first counts the number of wires within a power line span and, then, iteratively obtains individual wire points. When tested on two large Australian datasets, the proposed approach exhibited high object-based performance (correctness for pylons and wires of 100% and 99.6%, respectively) and high point-based performance (completeness for pylons and wires of 98.1% and 95%, respectively). Moreover, the planimetric accuracy for the detected pylons was 0.10 m. Thus, the proposed approach is demonstrated to be useful in effective extraction and modelling of pylons and wires.

Funder

Griffith University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review and future directions of techniques for extracting powerlines and pylons from LiDAR point clouds;International Journal of Applied Earth Observation and Geoinformation;2024-08

2. Automatic Vectorization of Power Lines from Airborne Lidar Point Clouds;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2024-06-11

3. Identification method of insulators in complex overhead transmission line scenarios based on three-dimensional point cloud features;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25

4. Power Line Extraction based on Feature Evaluation by Entropy Weight Method;2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC);2024-05-24

5. Powerline extraction from aerial and mobile LiDAR data using deep learning;Earth Science Informatics;2024-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3