Path Segmentation from Point Cloud Data for Autonomous Navigation

Author:

Rajathi Krishnamoorthi1,Gomathi Nandhagopal1,Mahdal Miroslav2ORCID,Guras Radek2

Affiliation:

1. Department of Computer Science & Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi 600 062, India

2. Department of Control Systems and Instrumentation, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic

Abstract

Autonomous vehicles require in-depth knowledge of their surroundings, making path segmentation and object detection crucial for determining the feasible region for path planning. Uniform characteristics of a road portion can be denoted by segmentations. Currently, road segmentation techniques mostly depend on the quality of camera images under different lighting conditions. However, Light Detection and Ranging (LiDAR) sensors can provide extremely precise 3D geometry information about the surroundings, leading to increased accuracy with increased memory consumption and computational overhead. This paper introduces a novel methodology which combines LiDAR and camera data for road detection, bridging the gap between 3D LiDAR Point Clouds (PCs). The assignment of semantic labels to 3D points is essential in various fields, including remote sensing, autonomous vehicles, and computer vision. This research discusses how to select the most relevant geometric features for path planning and improve autonomous navigation. An automatic framework for Semantic Segmentation (SS) is introduced, consisting of four processes: selecting neighborhoods, extracting classification features, and selecting features. The aim is to make the various components usable for end users without specialized knowledge by considering simplicity, effectiveness, and reproducibility. Through an extensive evaluation of different neighborhoods, geometric features, feature selection methods, classifiers, and benchmark datasets, the outcomes show that selecting the appropriate neighborhoods significantly develops 3D path segmentation. Additionally, selecting the right feature subsets can reduce computation time, memory usage, and enhance the quality of the results.

Funder

Ministry of Education, Youth and Sports, Czech Republic

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3