Robust Autonomous Vehicle Computer-Vision-Based Localization in Challenging Environmental Conditions

Author:

Chuprov Sergei1ORCID,Belyaev Pavel2ORCID,Gataullin Ruslan2ORCID,Reznik Leon1ORCID,Neverov Evgenii2ORCID,Viksnin Ilia2ORCID

Affiliation:

1. Department of Computer Science and Global Cybersecurity Institute, Rochester Institute of Technology, Rochester, NY 14623, USA

2. Department of Computer Science, Saint Petersburg Electrotechnical University “LETI“, St. Petersburg 197022, Russia

Abstract

In this paper, we present a novel autonomous vehicle (AV) localization design and its implementation, which we recommend to employ in challenging navigation conditions with a poor quality of the satellite navigation system signals and computer vision images. In the case when the GPS signal becomes unstable, other auxiliary navigation systems, such as computer-vision-based positioning, are employed for more accurate localization and mapping. However, the quality of data obtained from AV’s sensors might be deteriorated by the extreme environmental conditions too, which infinitely leads to the decrease in navigation performance. To verify our computer-vision-based localization system design, we considered the Arctic region use case, which poses additional challenges for the AV’s navigation and might employ artificial visual landmarks for improving the localization quality, which we used for the computer vision training. We further enhanced our data by applying affine transformations to increase its diversity. We selected YOLOv4 image detection architecture for our system design, as it demonstrated the highest performance in our experiments. For the computational platform, we employed a Nvidia Jetson AGX Xavier device, as it is well known and widely used in robotic and AV computer vision, as well as deep learning applications. Our empirical study showed that the proposed computer vision system that was further trained on the dataset enhanced by affine transformations became robust regarding image quality degradation caused by extreme environmental conditions. It was effectively able to detect and recognize images of artificial visual landmarks captured in the extreme Arctic region’s conditions. The developed system can be integrated into vehicle navigation facilities to improve their effectiveness and efficiency and to prevent possible navigation performance deterioration.

Funder

United States Military Academy

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Terrain detection and segmentation for autonomous vehicle navigation: A state-of-the-art systematic review;Information Fusion;2025-01

2. Research on Some Key Technologies of Deep Learning in the Field of Computer Vision;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01

3. Smart Sensor Fusion for Reliable Autonomous Navigation in Challenging Environments;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3