MLGTM: Multi-Scale Local Geometric Transformer-Mamba Application in Terracotta Warriors Point Cloud Classification

Author:

Zhou Pengbo1ORCID,An Li2ORCID,Wang Yong2ORCID,Geng Guohua2ORCID

Affiliation:

1. School of Arts and Communication, Beijing Normal University, Beijing 100875, China

2. School of Information Science and Technology, Northwest University, Xi’an 710127, China

Abstract

As an important representative of ancient Chinese cultural heritage, the classification of Terracotta Warriors point cloud data aids in cultural heritage preservation and digital reconstruction. However, these data face challenges such as complex morphological and structural variations, sparsity, and irregularity. This paper proposes a method named Multi-scale Local Geometric Transformer-Mamba (MLGTM) to improve the accuracy and robustness of Terracotta Warriors point cloud classification tasks. To effectively capture the geometric information of point clouds, we introduce local geometric encoding, including local coordinates and feature information, effectively capturing the complex local morphology and structural variations of the Terracotta Warriors and extracting representative local features. Additionally, we propose a multi-scale Transformer-Mamba information aggregation module, which employs a dual-branch Transformer with a Mamba structure and finally aggregates them on multiple scales to effectively handle the sparsity and irregularity of the Terracotta Warriors point cloud data. We conducted experiments on several datasets, including the ModelNet40, ScanObjectNN, ShapeNetPart, ETH, and 3D Terracotta Warriors fragment datasets. The results show that our method significantly improves the classification task of Terracotta Warriors point clouds, demonstrating strong accuracy.

Funder

Key Laboratory Project of the Ministry of Culture and Tourism

National Social Science and Art Major Project

National Natural Science Foundation of China

Xi’an Science and Technology Plan Project

Shaanxi Provincial Natural Science Foundation

National key research and development plan

Publisher

MDPI AG

Reference49 articles.

1. HRNet: 3D object detection network for point cloud with hierarchical refinement;Lu;Pattern Recognit.,2024

2. Inor-net: Incremental 3-d object recognition network for point cloud representation;Dong;IEEE Trans. Neural Netw. Learn. Syst.,2023

3. WHU-Urban3D: An urban scene LiDAR point cloud dataset for semantic instance segmentation;Han;ISPRS J. Photogramm. Remote Sens.,2024

4. NeiEA-NET: Semantic segmentation of large-scale point cloud scene via neighbor enhancement and aggregation;Xu;Int. J. Appl. Earth Obs. Geoinf.,2023

5. Match normalization: Learning-based point cloud registration for 6d object pose estimation in the real world;Dang;IEEE Trans. Pattern Anal. Mach. Intell.,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3