The Linkage of the Large-Scale Circulation Pattern to a Long-Lived Heatwave over Mideastern China in 2018

Author:

Li Muyuan,Yao YaoORCID,Luo Dehai,Zhong Linhao

Abstract

In this study, the large-scale circulation patterns (a blocking high, wave trains and the western Pacific subtropical high (WPSH)) associated with a wide ranging and highly intense long-lived heatwave in China during the summer of 2018 are examined using both observational data and reanalysis data. Four hot periods are extracted from the heatwave and these are related to anticyclones (hereafter referred to as heatwave anticyclone) over the hot region. Further analysis shows a relationship between the heatwave anticyclone and a synthesis of low, mid- and high latitude circulation systems. In the mid-high latitudes, a midlatitude wave train and a high latitude wave train are associated with a relay process which maintains the heatwave anticyclone. The midlatitude wave train acts during 16–21 July, whereas the high latitude wave train takes affect during 22–28 July. The transition between the two wave trains leads to the northward movement of the hot region. With the help of a wave flux analysis, it was found that both wave trains originate from the positive North Atlantic Oscillation (NAO+) which acts as an Atlantic wave source. Serving as a circulation background, the blocking situated over the Scandinavia-Ural sector is maintained for 18 days from 14 to 15 August, which is accompanied by the persistent wave trains and the heatwave anticyclone. Additionally, the abnormal northward movement of the WPSH and its combination with the high latitude wave train lead to the occurrence of extreme hot weather in north-eastern China occurring during the summer of 2018.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3