Causes of 2022 Pakistan flooding and its linkage with China and Europe heatwaves

Author:

Hong Chi-CherngORCID,Huang An-YiORCID,Hsu Huang-HsiungORCID,Tseng Wan-LingORCID,Lu Mong-MingORCID,Chang Chih-Chun

Abstract

AbstractIn boreal summer of 2022, Pakistan experienced extremely high rainfall, resulting in severe flooding and displacing over 30 million people. At the same time, heatwaves persisted over central China and Europe. The coexistence of these extreme events suggests a possible linkage. Our analysis indicated that the record rainfall was mainly induced by compounding factors. These included (1) La Niña-induced strong anomalous easterlies over the northern Indian subcontinent, (2) intense southerlies from the Arabian Sea with an upward trend in recent decades, (3) an interaction between extratropical and tropical systems, specifically the northerly flow downstream of the Europe blocking and the southerly monsoon flow from the Arabian Sea. Wave activity flux and regression analyses unveiled a distinct stationary Rossby wave-like pattern connecting the flooding in Pakistan and heatwaves in Europe and China. This pattern, an emerging teleconnection pattern in recent decade, exhibited substantial differences from the reported teleconnection patterns. We also noted the positive feedback of the excessive Pakistan rainfall could further enhance the large-scale background flow and the heavy rainfall itself. The 2022 Pakistan flood event was an intensified manifestation of the 2010 Pakistan flood event, which was also caused by compounding factors, but occurred in a more pronounced upward trend in the both tropics and extratropics.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3