Affiliation:
1. Public Meteorological Service Center, China Meteorological Administration Beijing China
2. Laboratory of Regional Climate–Environment for Temperate East Asia, Institute of Atmospheric Physics Chinese Academy of Sciences, and University of Chinese Academy of Sciences Beijing China
3. School of Geography, Earth and Atmospheric Sciences University of Melbourne Parkville Victoria Australia
4. National Institute of Natural Hazards, Ministry of Emergency Management of China Beijing China
Abstract
AbstractIn this article, the meridional gradient of daily potential vorticity (PV) on the 330 K isentropic surface is used to identify atmospheric blocking events for the period 1979–2019. The associated two‐dimensional index considers not only Rossby wave breaking, but also energy dispersion and nonlinearity of blocking systems, and thus has a solid theoretical foundation. It also has the advantage of automatically excluding subtropical high‐pressure systems in summer and autumn. The index reveals that the Northern Hemisphere exhibits high blocking frequency over Euro‐Atlantic, North Pacific and Greenland in winter, spring and autumn, and over two wide‐extended bands at high latitudes in summer. Two prominent blocking episode (BE) intensity centres are found over the eastern Atlantic and eastern Pacific in all seasons, while the long‐lived BE is primarily situated in regions with high BE frequency. There is more frequent and longer‐lived BE in the Euro‐Atlantic sector than in the North Pacific, whereas the BE in the North Pacific is more intense. Notably, with the same poleward criterion for the four seasons, the BE frequency and duration are supposed to be overestimated in summer. Comparing our blocking detection method with previous blocking indices provides additional information about the long‐term trends for blocking frequency and intensity, which can be useful to our understanding of future extremes on climate time‐scales. It is found that both blocking frequency and intensity exhibit upward linear trends in the Ural region and Barents–Kara Sea in winter, Europe, northern North Pacific and East Siberia in spring, western Greenland in summer, as well as Norwegian Sea, Europe and North Atlantic in autumn, which point to increases in high‐impact weather events in these regions.
Funder
National Natural Science Foundation of China
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献