Design of Eco-Efficient Body Parts for Electric Vehicles Considering Life Cycle Environmental Information

Author:

Reimer Lars,Kaluza AlexanderORCID,Cerdas FelipeORCID,Meschke Jens,Vietor ThomasORCID,Herrmann ChristophORCID

Abstract

The reduction of greenhouse gas (GHG) emissions over the entire life cycle of vehicles has become part of the strategic objectives in automotive industry. In this regard, the design of future body parts should be carried out based on information of life cycle GHG emissions. The substitution of steel towards lightweight materials is a major trend, with the industry undergoing a fundamental shift towards the introduction of electric vehicles (EV). The present research aims to support the conceptual design of body parts with a combined perspective on mechanical performance and life cycle GHG emissions. Particular attention is paid to the fact that the GHG impact of EV in the use phase depends on vehicle-specific factors that may not be specified at the conceptual design stage of components, such as the market-specific electricity mix used for vehicle charging. A methodology is proposed that combines a simplified numerical design of concept alternatives and an analytic approach estimating life cycle GHG emissions. It is applied to a case study in body part design based on a set of principal geometries and load cases, a range of materials (aluminum, glass and carbon fiber reinforced plastics (GFRP, CFRP) as substitution to a steel reference) and different use stage scenarios of EV. A new engineering chart was developed, which helps design engineers to compare life cycle GHG emissions of lightweight material concepts to the reference. For body shells, the replacement of the steel reference with aluminum or GFRP shows reduced lifecycle GHG emissions for most use phase scenarios. This holds as well for structural parts being designed on torsional stiffness. For structural parts designed on tension/compression or bending stiffness CFRP designs show lowest lifecycle GHG emissions. In all cases, a high share of renewable electricity mix and a short lifetime pose the steel reference in favor. It is argued that a further elaboration of the approach could substantially increase transparency between design choices and life cycle GHG emissions.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference40 articles.

1. FOREL Studie 2018https://plattform-forel.de/studie/

2. Klimabilanz von E-Fahrzeugen & Life Cycle Engineering. 2019. Retrieved September 22, 2019https://uploads.volkswagen-newsroom.com/system/production/uploaded_files/14448/file/da01b16ac9b580a3c8bc190ea2af27db4e0d4546/Klimabilanz_von_E-Fahrzeugen_Life_Cycle_Engineering.pdf

3. An Integrated Framework for Life Cycle Engineering

4. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions

5. Life cycle engineering of lightweight structures

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3