Abstract
Aerosols can affect vertical thermal structure during heavily polluted episodes (HPEs). Here, we selected four typical HPEs in 2018, which were further subdivided into dust and haze events. The vertical distribution of aerosols extinction coefficient (EC) and variations in columnar optical properties were investigated based on sun-photometer and Lidar observation at an urban site in Beijing. The vertical characteristics in shortwave radiative heating rate (HR) of aerosols were studied using NASA/Goddard radiative transfer model along with observational data. In the haze episode, EC layer is less than 1.5 km and shows strong scattering, with single-scattering albedo (SSA440nm) of ~0.97. The heating effects are observed at the middle and upper atmosphere, and slight heating effects are found at the lower layer. The mean HR within 1.5 km can be up to 16.3 K day−1 with EC of 1.27 km−1, whereas the HR within 0.5 km is only 1.3 K day−1. In the dust episode, dust aerosols present the absorption with SSA440nm of ~0.88, which would heat the lower atmosphere to promote vertical turbulence, and the height of EC layer can be up to 2.0–3.5 km. In addition, the strong heating effects of dust layer produced cooling effects near the surface. Therefore, the accurate measurement of aerosols optical properties in HPEs is of great significance for modeling aerosols direct radiative effects.
Funder
National Natural Science Foundation of China
National key research and development program of China
Subject
General Earth and Planetary Sciences
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献