Inhalable Fungi and Opportunistic Pathogens During Haze and Haze‐Dust Events From Winter to Springtime in One Typical Inland City of Northern China

Author:

Wang Zhaowen1,Liu Houfeng1,Xu Pengju1,Nie Changliang2,Geng Xueyun2,Chen Jianmin2ORCID,Liu Siyu1,Wei Min12ORCID

Affiliation:

1. College of Geography and Environment Shandong Normal University Ji'nan China

2. Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3) Fudan Tyndall Centre Department of Environmental Science & Engineering Fudan University Shanghai China

Abstract

AbstractFungal aerosols, as significant biocomponents of inhalable particulate matter, encompass a variety of allergens and pathogens. However, comprehensive knowledge regarding their composition, sources, and opportunistic pathogens present in severe air pollution remains limited. In this study, PM2.5 samples were collected from January to March 2018 in a northern Chinese city, during the winter heating and spring sandstorm seasons. The fungal community characteristics within three distinct haze and haze‐dust composite pollution were examined. The concentration of fungal aerosols was found to be significantly higher in dust samples. This was evidenced by a strong positive correlation with Ca2+, temperature, and wind speed (p < 0.05). Human and animal pathogens, such as Candida, were more prevalent in haze samples. Conversely, allergens and plant pathogens, like Alternaria, were found in higher concentration in dust samples. The primary ecological function shifted from being saprophytic to becoming human‐animal pathogenic or plant‐animal pathogenic. This shift was observed from non‐pollution, haze, to haze‐dust composite pollution. The dispersion of fungal aerosols was influenced by factors such as dust events and meteorological conditions, including increased temperature and wind speed. In the spring dust episodes, dust‐related pollutants, such as soil Ca2+ and PM10, accounted for 51.39% of the variation in the fungal community. This research explored the dynamics of fungal communities, potential pathogens, and factors influencing fungal communities in regional air pollution. The insights garnered from this research provide a robust foundation for subsequent human health exposure assessments.

Funder

China Postdoctoral Science Foundation

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3