The Aerosol Optical Characteristics in Different Dust Events Based on a 532 nm and 355 nm Polarization Lidar in Beijing

Author:

Chen Zhenyi12ORCID,Huang Yifeng12,Yao Zhiliang12,Zhang Tianshu3,Fan Guangqiang3,Cao Xinyue12,Ji Chengli4

Affiliation:

1. School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China

2. State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China

3. Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China

4. CMA Meteorological Observation Centre, Beijing 100081, China

Abstract

Extreme weather events are happening more frequently as a result of global climate change. Dust storms broke out in the spring of 2017 in China and drastically impacted the local air quality. In this study, a variety of data, including aerosol vertical profiles, surface particle concentration, meteorological parameters, and MODIS–derived aerosol optical depth, as well as backward trajectory analysis, were employed to analyze two dust events from April to May in Beijing. The dust plumes were mainly concentrated below 0.8 km, with peak PM10 values of 1000 μg·m−3 and 300 μg·m−3 in the two cases. The aerosols showed different vertical distribution characteristics. The pure dust in case 1 from 4 to 5 May 2017 had a longer duration (2 days) and presented a larger aerosol extinction coefficient (2.27 km−1 at 355 nm and 1.25 km−1 at 532 nm) than that of the mixed dust in case 2 on 17 April 2017 (2.01 km−1 at 355 nm and 1.33 km−1 at 532 nm). The particle depolarization ratio (PDR) remained constant (0.24 ± 0.03 in case 1) from the surface to 0.8 km in height. In contrast, the PDR profile in the mixed dust (case 2) layer was split into two regions—large values exceeding 0.15 above 0.6 km and small values of 0.11 ± 0.03 below 0.6 km. The influence of meteorological information on aerosol distribution was also investigated, and wind was predominant through the observing period. The pure dust in case 1 was mainly from Mongolia, with strong northwest winds, while the near-surface mixed pollution was caused by the combination of long-transported sand and local emission. Furthermore, lidar-derived profiles of dust mass concentrations in the two cases were presented. This study reveals the vertical characteristics of dust aerosols in the production and dissipation of localized dust events and confirms the efficacy of thorough observations with multiple approaches from the ground to space to monitor dust events in real time.

Funder

Key Lab. of Environmental Optics and Technology, CAS

Meteorological Observation Center of China Meteorological Administration

School of Ecology and Environment at Beijing Technology and Business University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference58 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3