Predicting Leaf Nitrogen Content in Cotton with UAV RGB Images

Author:

Kou Jinmei,Duan LongORCID,Yin Caixia,Ma Lulu,Chen Xiangyu,Gao PanORCID,Lv Xin

Abstract

Rapid and accurate prediction of crop nitrogen content is of great significance for guiding precise fertilization. In this study, an unmanned aerial vehicle (UAV) digital camera was used to collect cotton canopy RGB images at 20 m height, and two cotton varieties and six nitrogen gradients were used to predict nitrogen content in the cotton canopy. After image-preprocessing, 46 hand features were extracted, and deep features were extracted by convolutional neural network (CNN). Partial least squares and Pearson were used for feature dimensionality reduction, respectively. Linear regression, support vector machine, and one-dimensional CNN regression models were constructed with manual features as input, and the deep features were used as inputs to construct a two-dimensional CNN regression model to achieve accurate prediction of cotton canopy nitrogen. It was verified that the manual feature and deep feature models constructed from UAV RGB images had good prediction effects. R2 = 0.80 and RMSE = 1.67 g kg−1 of the Xinluzao 45 optimal model, and R2 = 0.42 and RMSE = 3.13 g kg−1 of the Xinluzao 53 optimal model. The results show that the UAV RGB image and machine learning technology can be used to predict the nitrogen content of large-scale cotton, but due to insufficient data samples, the accuracy and stability of the prediction model still need to be improved.

Funder

the auspices of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3