Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn

Author:

Lee HwangORCID,Wang JinfeiORCID,Leblon Brigitte

Abstract

The optimization of crop nitrogen fertilization to accurately predict and match the nitrogen (N) supply to the crop N demand is the subject of intense research due to the environmental and economic impact of N fertilization. Excess N could seep into the water supplies around the field and cause unnecessary spending by the farmer. The drawbacks of N deficiency on crops include poor plant growth, ultimately reducing the final yield potential. The objective of this study is to use Unmanned Aerial Vehicle (UAV) multispectral imagery to predict canopy nitrogen weight (g/m2) of corn fields in south-west Ontario, Canada. Simple/multiple linear regression, Random Forests, and support vector regression (SVR) were established to predict the canopy nitrogen weight from individual multispectral bands and associated vegetation indices (VI). Random Forests using the current techniques/methodologies performed the best out of all the models tested on the validation set with an R2 of 0.85 and Root Mean Square Error (RMSE) of 4.52 g/m2. Adding more spectral variables into the model provided a marginal improvement in the accuracy, while extending the overall processing time. Random Forests provided marginally better results than SVR, but the concepts and analysis are much easier to interpret on Random Forests. Both machine learning models provided a much better accuracy than linear regression. The best model was then applied to the UAV images acquired at different dates for producing maps that show the spatial variation of canopy nitrogen weight within each field at that date.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3