Maize yield and nitrate loss prediction with machine learning algorithms

Author:

Shahhosseini MohsenORCID,Martinez-Feria Rafael AORCID,Hu GuipingORCID,Archontoulis Sotirios VORCID

Abstract

Abstract Pre-growing season prediction of crop production outcomes such as grain yields and nitrogen (N) losses can provide insights to farmers and agronomists to make decisions. Simulation crop models can assist in scenario planning, but their use is limited because of data requirements and long runtimes. Thus, there is a need for more computationally expedient approaches to scale up predictions. We evaluated the potential of four machine learning (ML) algorithms (LASSO Regression, Ridge Regression, random forests, Extreme Gradient Boosting, and their ensembles) as meta-models for a cropping systems simulator (APSIM) to inform future decision support tool development. We asked: (1) How well do ML meta-models predict maize yield and N losses using pre-season information? (2) How many data are needed to train ML algorithms to achieve acceptable predictions? (3) Which input data variables are most important for accurate prediction? And (4) do ensembles of ML meta-models improve prediction? The simulated dataset included more than three million data including genotype, environment and management scenarios. XGBoost was the most accurate ML model in predicting yields with a relative mean square error (RRMSE) of 13.5%, and Random forests most accurately predicted N loss at planting time, with a RRMSE of 54%. ML meta-models reasonably reproduced simulated maize yields using the information available at planting, but not N loss. They also differed in their sensitivities to the size of the training dataset. Across all ML models, yield prediction error decreased by 10%–40% as the training dataset increased from 0.5 to 1.8 million data points, whereas N loss prediction error showed no consistent pattern. ML models also differed in their sensitivities to input variables (weather, soil properties, management, initial conditions), thus depending on the data availability researchers may use a different ML model. Modest prediction improvements resulted from ML ensembles. These results can help accelerate progress in coupling simulation models and ML toward developing dynamic decision support tools for pre-season management.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference62 articles.

1. New algorithms for detecting multi-effect and multi-way epistatic interactions;Ansarifar;Bioinformatics,2018

2. Iowa farmers’ nitrogen management practices and perspectives;Arbuckle,2014

3. Nonlinear regression models and applications in agricultural research;Archontoulis;Agronomy J.,2014

4. Uncertainty in simulating wheat yields under climate change;Asseng;Nat. Clim. Change,2013

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3