Design of a precise ensemble expert system for crop yield prediction using machine learning analytics

Author:

Tripathi Deeksha1ORCID,Biswas Saroj K.1

Affiliation:

1. Department of Computer Science and Engineering National Institute of Technology Silchar India

Abstract

AbstractAgriculture is facing significant challenges in the development of crop yield forecasts, which are important aspects of decision‐making at the international, regional, and local levels. The area of agriculture is attracting growing attention because of increasing the demand for food supplies. To ensure future food supplies, crop yield prediction (CYP) provides the best decision‐making to assist farmers in agricultural yield forecasting efficiently. Nevertheless, CYP is a difficult endeavor because of the intricacy of the underlying mechanisms and the effect of numerous factors, including weather patterns, soil characteristics, and crop management techniques. In today's era, ensemble learning (EL) approaches have recently demonstrated significant promise for enhancing the reliability and accuracy of CYP. The success of the EL techniques depends on several facts, including how the base learner models are trained and how these are combined. This study provides important insights into the EL techniques for CYP. This paper proposes an expert system model named precise ensemble expert system for crop yield prediction (PEESCYP) to predict the best crop for agricultural land. The proposed PEESCYP model employs multiple imputation by chained equation (MICE) data imputation technique to treat the missing values of the collected dataset, the isolation forest (IF) technique for outlier detection, the ant colony optimization (ACO) technique to perform feature selection, robust scaling (RS) technique to perform data normalization, and the extra tree (ET) is used for classification to overcome the variance and overfitting problem of the single classifiers. The measurements of the proposed PEESCYP model have been collected by means of accuracy, precision, recall, and F‐1 score using a prepared dataset, which is collected from International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT), and the proposed model is compared with different single‐classifier based ML models, EL models, and various existing models available in the literature. The results of this experiment underline that the proposed PEESCYP model outperforms the others.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3