Deciphering nitrogen concentrations in Metasequoia glyptostroboides: a novel approach using RGB images and machine learning

Author:

Ma Cong,Tong Ran,Zhu Nianfu,Yuan Wenwen,Li Yanji,Wang G. Geoff,Wu Tonggui

Abstract

AbstractRecent advances in spectral sensing techniques and machine learning (ML) methods have enabled the estimation of plant physiochemical traits. Nitrogen (N) is a primary limiting factor for terrestrial forest growth, but traditional methods for N determination are labor-intensive, time-consuming, and destructive. In this study, we present a rapid, non-destructive method to predict leaf N concentration (LNC) in Metasequoia glyptostroboides plantations under N and phosphorus (P) fertilization using ML techniques and unmanned aerial vehicle (UAV)- based RGB (red, green, blue) images. Nine spectral vegetation indices (VIs) were extracted from the RGB images. The spectral reflectance and VIs were used as input features to construct models for estimating LNC based on support vector machine, random forest (RF), and multiple linear regression, gradient boosting regression and classification and regression trees (CART). The results show that RF is the best fitting model for estimating LNC with a coefficient of determination (R2) of 0.73. Using this model, we evaluated the effects of N and P treatments on LNC and found a significant increase with N and a decrease with P. Height, diameter at breast height (DBH), and crown width of all M. glyptostroboides were analyzed by Pearson correlation with the predicted LNC. DBH was significantly correlated with LNC under N treatment. Our results highlight the potential of combining UAV RGB images with an ML algorithm as an efficient, scalable, and cost-effective method for LNC quantification. Future research can extend this approach to different tree species and different plant traits, paving the way for large-scale, time-efficient plant growth monitoring.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3