Interaction of the Coupled Effects of Irrigation Mode and Nitrogen Fertilizer Format on Tomato Production

Author:

Huang Yuan12,Yang Ying-Ru13,Yu Jing-Xin4ORCID,Huang Jia-Xuan12,Kang Yi-Fan15,Du Ya-Ru12,Tian Guo-Ying15

Affiliation:

1. Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China

2. Key Laboratory for Agricultural Information Perception and Intelligent Control of Shijiazhuang, Shijiazhuang 050041, China

3. Shijiazhuang Agricultural Information Engineering Technology Research Center, Shijiazhuang 050041, China

4. Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

5. Hebei Province City Agriculture Technology Innovation Centers, Shijiazhuang 050041, China

Abstract

The production efficiency and quality of tomatoes is affected by the mode of irrigation and the nitrogen forms. This study explored the impacts of different irrigation regimes, nitrogen forms, and their coupled effects on tomato production. The various irrigation regimes were set at 50%FC~90%FC (W1), 60%FC~90%FC (W2), 70%FC~90%FC (W3), and 80%FC~90%FC (W4) Furthermore, the control (CK) group followed a conventional drip irrigation regime in the local area. Nitrogen forms in this study comprised urea-based fertilizer (urea N 32%, F1), nitrate-based fertilizer (calcium ammonium nitrate N 15%, F2), and ammonium-based fertilizer (ammonium sulfate N 21%, F3). Combining these two factors yielded 15 treatment groups. The experiment was conducted in a solar greenhouse, and the soil type was sandy loam soil. The research focused on observing the yield, quality, and water–fertilizer use efficiency of tomatoes under these 15 treatment groups. The results demonstrate that irrigation had a more significant impact on the yield and nutrient accumulation rate compared to the nitrogen forms. To comprehensively evaluate the yield, quality, and water–fertilizer use efficiency of tomatoes, a combination evaluation method was employed. W3F2 produced the highest yield, CKF2 achieved the highest comprehensive quality score, and W2F2 had the highest comprehensive water and fertilizer use efficiency score. Using the fuzzy Borda model, the evaluation information of the three dimensions was combined. W3F2 ranked first, suggesting the adoption of an irrigation control regime of 70%FC to 90%FC, along with the application of nitrate-based nitrogen fertilizer during the fruit set to the harvest stage. It presented the best performance of tomato yield, quality, and water–fertilizer use efficiency across multiple dimensions.

Funder

Hebei Province Key R&D Program Project

Shijiazhuang Municipal Science and Technology Research and Development

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3