Evaluating the Influence of Deficit Irrigation on Fruit Yield and Quality Indices of Tomatoes Grown in Sandy Loam and Silty Loam Soils

Author:

Alordzinu Kelvin EdomORCID,Appiah Sadick AmoakoheneORCID,AL Aasmi AlaaORCID,Darko Ransford Opoku,Li Jiuhao,Lan Yubin,Adjibolosoo Daniel,Lian Chenguo,Wang Hao,Qiao Songyang,Liao Juan

Abstract

The most important biotic stress factor impacting tomato crop biophysical, biochemical, physiological, and morphological features is water stress. A pot experiment was undertaken in a greenhouse to study the drought responsiveness of tomato (Solanum lycopersicum) yield and quality indices in sandy loam and silty loam soils. For both sandy loam and silty loam soils, the water supply levels were 70–100% FC, 60–70% FC, 50–60% FC, and 40–50% FC of ETo (crop evapotranspiration) from the vegetative stage to the fruit ripening stage, calculated using the Hargreaves–Samani (HS) model compared to the time-domain reflectometer (TDR) values calibrated using volumetric water content (VWC). The experiment was conducted as a 2 × 4 factorial experiment, arranged in a completely randomized block design, with four treatments replicated four times. In this study, we examined how sandy loam and silty loam soils at different % FC affect the total marketable yield and quality components of tomatoes, concentrating on total soluble solids (Brix), fruit firmness, dry fruit mass, pH, titratable acid (TA), ascorbic acid (Vit. C), and carotenoid composition. Lycopene and β-Carotene were estimated using the UV spectroscopy method, with absorption spectra bands centered at 451 nm, 472 nm, 485 nm, and 502 nm. The results revealed that even though there were some limitations, TDR-based soil moisture content values had a strong positive correlation with HS-based evapotranspiration, with R2 = 0.8, indicating an improvement whereby TDR can solely be used to estimate soil water content. Tomato plants subjected to 40–50% FC (ETo) water stress in both sandy loam and silty loam soils recorded the highest total soluble solids, titratable acidity, ascorbic acid content, and β-carotene content at an absorption peak of 482 nm, and lycopene content at an absorption peak of 472 nm, with lower fruit firmness, fruit juice content, and fruit juice pH, and a reduced marketable yield. Similarly, tomato plants subjected to 60–70% FC throughout the growing season achieved good fruit firmness, percent juice content, total soluble solids, titratable acidity, ascorbic acid content, and chlorophyll content (SPAD), with minimum fruit juice pH and high marketable yield in both soil textural types. It is concluded that subjecting tomato plants to 60–70% FC (ETo) has a constructive impact on the marketable yield quality indices of tomatoes.

Funder

National Natural Science Foundation of China AND Key-Area Research and Development program of Guangdong Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3