Evidence of the Possible Interaction between Ultrasound and Thiol Precursors

Author:

Roman TomasORCID,Tonidandel Loris,Nicolini Giorgio,Bellantuono Elisabetta,Barp Laura,Larcher Roberto,Celotti Emilio

Abstract

The effect of ultrasound (20 kHz, 153 μm) on the prefermentation extraction mechanisms in Sauvignon Blanc grapes was studied, focusing on 3-mercaptohexan-1-ol (3MH) and 4-mercapto-4-methyl-pentan-2-one (4MMP) precursors linked to glutathione (GSH) and cysteine (Cys). The treatment determined a positive extraction trend between the duration (untreated, 3 and 5 min) and the conductivity or the concentration of catechins and total phenols, significantly differentiated after 5 min. Nevertheless, the concentration of the thiol precursors in grape juice not only remained undifferentiated, but that of 3-S-glutathionyl mercaptohexan-1-ol showed a negative trend with the treatment time applied (168 ± 43, 156 ± 36, and 149 ± 32 μg/L, respectively, for control, 3 and 5 min). The divergence on the effect between families of compounds suggests an interaction between the sonication treatment and thiol precursor molecules. In order to evaluate the possible degradation properly, ultrasound was applied in a model solution spiked with 3MH and 4MMP precursors, reproducing the conditions of grapes. Except for Cys-3MH, the mean concentration (n = 5) for the rest of the precursors was significantly lower in treated samples, predominantly in those linked to glutathione (~−22% and ~18% for GSH-3MH and GSH-4MMP) rather than to cysteine (~−6%~−8% for Cys-3MH and Cys-4MMP). The degradation of precursors was associated with a significant increase of 3MH and 4MMP. The formation of volatile thiols following sonication is interesting from a technological point of view, as they are key aroma compounds of wine and potentially exploitable in the wine industry through specific vinification protocols.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3