Research on Downstream Safety Risk Warning Model for Small Reservoirs Based on Granger Probabilistic Radial Basis Function Neural Network

Author:

Xue Song12,Chen Jingyan12,Li Sheng1,Huang Huaai2

Affiliation:

1. Business School, Hohai University, Nanjing 211100, China

2. Institute of Project Management, Hohai University, Nanjing 211100, China

Abstract

Early warning of safety risks downstream of small reservoirs is directly related to the safety of people’s lives and property and the economic and social development of the region. The lack of data and low collaboration in downstream safety management of small reservoirs makes the existing safety risk warning methods for small reservoirs no longer fully applicable. The data from flood control and drought relief departments, small reservoir operation and management departments, etc., are used comprehensively. A machine learning model suitable for a large number of samples, a small amount of data, and the condition of incomplete information is applied and innovated, and from the holistic perspective of ‘upstream reservoir—downstream region’, the safety risk factors of the upstream reservoir are identified with the help of the Granger causality test. The risk losses of the disaster behavior are predicted with the three-dimensional k~ε two-equation model coupled with the VOF (Volume of fluid) method and the neural network model. The safety risk dynamics prediction, the prediction of the disaster-causing environment, and the prediction of the risk losses are integrated to construct the early warning method of the downstream safety risk of small reservoirs, and the simulation effect is verified with the example of the J Reservoir. The results show that the model can clarify the causal relationships and time lag dependencies between hydro-meteorological factors and the water level of small reservoirs, and calculate the inundation depth, inundation range, and flood velocity downstream of small reservoirs. The downstream safety warning model of small reservoirs constructed in this article can effectively integrate upstream and downstream information, further improve the timeliness and accuracy of warning, and provide a reference for downstream safety risk management of small reservoirs.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

China Scholarship Council

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3