Flood Control Versus Water Conservation in Reservoirs: A New Policy to Allocate Available Storage

Author:

Gabriel-Martin IvanORCID,Sordo-Ward AlvaroORCID,Santillán DavidORCID,Garrote LuisORCID

Abstract

The aim of this study is to contribute to solving conflicts that arise in the operation of multipurpose reservoirs when determining maximum conservation levels (MCLs). The specification of MCLs in reservoirs that are operated for water supply and flood control may imply a reduction in the volume of water supplied with a pre-defined reliability in the system. The procedure presented in this study consists of the joint optimization of the reservoir yield with a specific reliability subject to constraints imposed by hydrological dam safety and downstream river safety. We analyzed two different scenarios by considering constant or variable initial reservoir level prior to extreme flood events. In order to achieve the global optimum configuration of MCLs for each season, we propose the joint optimization of three variables: minimize the maximum reservoir level (return period of 1000 years), minimize the maximum released outflow (return period of 500 years) and maximize the reservoir yield with 90% reliability. We applied the methodology to Riaño Dam, jointly operated for irrigation and flood control. Improvements in the maximum reservoir yield (with 90% reliability) increased up to 10.1% with respect to the currently supplied annual demand (545 hm3) for the same level of dam and downstream hydrological safety. The improvement could increase up to 26.8% when compared to deterministic procedures. Moreover, dam stakeholders can select from a set of Pareto-optimal configurations depending on if their main emphasis is to maintain/increase the hydrological safety, or rather to maintain/increase the reservoir yield.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3