Pore Structure and Fractal Characteristics of Continental Low Maturity Organic-Rich Shale in the Sha-4 Member of the Liaohe Western Depression

Author:

Liu Yinglin,Zhang Lei,Zhang Xuejuan,He Xin,Li Jinpeng,Xing Yabing,Jin Fuxin,Wang Yiran

Abstract

The research on pore structure and heterogeneity of shale reservoirs has always been a hotspot in the study of unconventional reservoir characteristics. China is a country dominated by continental shale. Compared with marine shale, continental shale has lower maturity and stronger reservoir heterogeneity. In this study, Sha-4 shale in the Liaohe Western Depression was selected for low-temperature nitrogen adsorption, scanning electron microscopy and other experiments revealing the pore structure and fractal characteristics of continental low mature organic-rich shale. The fractal dimension was calculated by the FHH model and the effects of TOC and mineral composition on pore structure and fractal characteristics were discussed. The results show that the Sha-4 shale in the study area is mainly mesoporous and the main pore types are inorganic pores with relatively large pore diameters, such as intergranular pores and inter-crystalline pores. The pore morphology is very complex, mainly narrow slit and flat pore, and the pore is often filled with organic matter. The fractal dimensions D1 range from 2.58 to 2.87 and D2 range from 2.18 to 2.55, and the pore structure shows obvious dual fractal characteristics. The pore structure and fractal characteristics of shale are mainly affected by TOC and quartz due to the low degree of the thermal evolution of shale and their effects are different from those of marine shale reservoirs. The increase in TOC reduces the heterogeneity of the shale reservoir. In addition, mineral particles with strong weathering resistance and stability such as quartz can protect the pore structure of shale, improve the pore structure and reduce the reservoir heterogeneity. This study can provide support for the study of low maturity continental shale reservoir heterogeneity in the Sha-4 member of the Liaohe Western Depression.

Funder

Natural Science Foundation of Chongqing, China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3