Affiliation:
1. School of Petroleum Engineering, Chongqing University of Science & Technology, Chongqing 401331, China
2. Exploration and Development Research Institute of Liaohe Oilfield, Panjin 124010, China
3. Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
Abstract
Oil content and the movability of shale oil are important indicators for the evaluation of continental shale oil. In recent years, the sandwiched shale oil in the fourth member of the Shahejie Formation in the Liaohe Western Depression area of the Bohai Bay Basin has shown great exploration potential, while the understanding of shale oil content and the movability of shale oil is weak. In this study, through a combination of core observations and experiments, we clarified the shale lithofacies types in the fourth member of the Shahejie Formation in the Liaohe Western Depression and explored the influencing factors of the characteristics in the oil-bearing and movability of shales in different lithofacies. The results of the study show that the organic matter content of the shale is high (TOC = 2.2–4.3%), but the maturity of thermal evolution is low (Ro = 0.38–0.55%), and the mineral component is dominated by clay minerals (30.3–72.7%), with quartz, feldspar, and other feldspar minerals developing secondarily. According to the content of organic matter, the mineral component, and the sedimentary structure, five types of lithofacies can be classified: organic-rich laminated clay-bearing felsic shale lithofacies (LS1), organic-rich laminated clay felsic mixed shale lithofacies (LS2), organic-rich layered clay felsic mixed shale lithofacies (LS3), organic-containing massive felsic-bearing clay shale lithofacies (LS4), and organic-containing massive clay felsic mixed shale lithofacies (LS5). The oil content of shale is mainly affected by the organic matter. The rate of increase in oil content of shale is fastest when the organic matter content is between 2 and 4%. The movability of shale oil is mainly controlled by the sedimentary structure, mineral component, and microscopic pore structure; the more the shale laminae is developed, the lower the clay content is, and the more the pore space is developed, the better the movability of shale oil is. Combined with the results of the shale oil content and mobility analysis in the study area, LS2 and LS3 are the dominant lithofacies in the fourth member of the Shahejie Formation in the study area, followed by LS1 >LS5 >LS4, so shale oil exploration should focus on the development of LS2 and LS3.
Funder
Chongqing Talent Plan “Contract System” Project
Chongqing Natural Science Foundation
Science and Technology Research Project of Chongqing Education Commission