Pore Structure and Fractal Characteristics of Coal Measure Shale in the Wuxiang Block in the Qinshui Basin

Author:

Liu Shunxi12,Xue Hongjiao1,Zhao Mengyu1

Affiliation:

1. School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454003, China

2. Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo 454003, China

Abstract

To study the fractal characteristics of the pore structure and the main controlling factors of coal measure shale in the Wuxiang block in Qinshui Basin, gas adsorption (CO2 and N2), mercury intrusion porosimetry (MIP), total organic carbon (TOC) content, and X-ray diffraction (XRD) experiments were carried out. The fractal dimensions of the micropores, mesopores, and macropores were computed by combining the V-S, FHH, and MENGER models. The results show that the fractal dimension increases with the increase in pore size; so, the macropore structure is the most complex. The effects of the TOC content, mineral fractions, and pore structure on the fractal dimensions were analyzed. The results showed that the TOC content certainly correlated with the mesopore fractal dimension, and the R2 is 0.9926. The pore volume and specific surface area show an obvious positive correlation with the macroporous fractal dimension, and their R2 values are 0.6953 and 0.6482, indicating that the macroporous pore structure of coal shale in the study area is more complex. There is a significant positive correlation between kaolinite and the macropore fractal dimension, and the R2 is 0.7295. Therefore, the organic carbon and kaolinite contents and the pore structure parameters are the most important factors affecting the fractal dimension characteristics.

Funder

Key Technologies Research and Development Program of Henan Province

Doctoral Foundation of Henan Polytechnic University

Youth Innovative Exploratory Fund of Henan Polytechnic University

Program for Innovative Research Team (in Science and Technology) in Universities of Henan Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3