Impacts of Climate Change Scenarios on Non-Point Source Pollution in the Saemangeum Watershed, South Korea

Author:

Li Ting,Kim GwangseobORCID

Abstract

Non-point source (NPS) pollution is a primary cause of water pollution in the Saemangeum watershed in South Korea. The changes in NPS pollutant loads in the Saemangeum watershed for an 81-year period (2019–2099) were simulated and analyzed by applying the soil and water assessment tool. Six climate model (BCC-CSM1–1, CanESM2, GFDL-ESM2G, HadGEM2-CC, INM-CM4, and MIROC-ESM) outputs using representative concentration pathway (RCP) scenarios (RCP 4.5 and RCP 8.5) were obtained from the South Korean Asia-Pacific Economic Cooperation (APEC) Climate Center. Simulated streamflow and water quality were evaluated using the Nash–Sutcliffe efficiency (NSE) index and coefficient of determination (R2). The model satisfactorily simulated streamflow with positive NSE values and R2 > 0.5. Based on two climate change scenarios (RCP 4.5 and RCP 8.5), gradual increases of 70.9 to 233.8 mm and 1.7 to 5.7 °C in annual precipitation and temperature, respectively, are likely for two time periods (2019–2059 and 2060–2099). Additionally, the expected future average annual and monthly streamflow, sediment, and total phosphorus showed changes of 5% to 43%, 3% to 40%, and −55% to 15%, respectively, whereas the expected future average annual and monthly total nitrogen showed decreases of −5% to −27%. Future NPS pollutant loads in the Saemangeum watershed should be managed according to different climate change scenarios.

Funder

Korea Environmental Industry and Technology Institute

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference25 articles.

1. Regional Non point Source Organic Pollution Modeling and Critical Area Identification for Watershed Best Environmental Management

2. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations;Moriasi;Trans. Am. Soc. Agric. Biol. Eng.,2007

3. Application of SWAT Model for Hydrologic and Water Quality Modeling in Thachin River Basin, Thailand

4. ArcSWAT Interface for SWAT 2009 USDA Agricultural Research Servicehttps://swat.tamu.edu/media/114647/2014-brazil-swat-conference-proceedings-secured.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3