Assessment of Water Quality in a Coastal Region of Sea Dike Construction in Korea and the Impact of Low Dissolved Oxygen Concentrations on pH Changes

Author:

Lee Yong-Woo1,Oh Yong Hwa2,Lee Sang Heon3ORCID,Kim Dohyun1,Joung DongJoo3

Affiliation:

1. Marine Environment Monitoring Department, Korea Marine Environment Management Corporation, Busan 49111, Republic of Korea

2. Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea

3. Department of Oceanography, Pusan National University, Busan 46241, Republic of Korea

Abstract

To investigate the factors affecting water quality in coastal regions with sea dike constructions, surface water outside a sea dike was monitored for six years from 2015 to 2020 in the Saemangeum region of Korea. Statistical analyses of the six years of high-frequency measurements revealed that the water quality in this system was predominantly governed by natural processes followed by pollutant inputs as the secondary influencing factor. Severe dissolved oxygen (DO) depletion was observed in the surface waters during warm periods, probably owing to the advection of DO-depleted water from elsewhere to the surface layer. Based on the apparent oxygen utilization (AOU)–pH relationship (r = 0.52, n = 1837), the maximum AOU (180 µM) led to a pH decrease from 8.04 to 7.50, which was considerably lower than the estimated value of 7.72. This extra pH drop was probably due to a reduction in the buffering capacity associated with increased CO2 in the water column originating from the atmosphere and in situ production, as well as local water column redox reactions associated with benthic inputs of reduced chemical species. Overall, persistent DO depletion with ongoing eutrophication/hypoxia could accelerate ocean acidification in Korean coastal waters, which could be more acute in coastal regions with artificial coastal constructions.

Funder

Pusan National University Research

National Research Foundation of Korea

Korea Institute of Marine Science and Technology Promotion

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study of the Effect of Tides on Coastal Water Testing;Journal of the Korean Society of Marine Environment and Safety;2023-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3