Impact of Tree Crown Transmittance on Surface Reflectance Retrieval in the Shade for High Spatial Resolution Imaging Spectroscopy: A Simulation Analysis Based on Tree Modeling Scenarios

Author:

Adeline Karine R. M.ORCID,Briottet XavierORCID,Lefebvre SidonieORCID,Rivière Nicolas,Gastellu-Etchegorry Jean-Philippe,Vinatier Fabrice

Abstract

With the advancement of high spatial resolution imaging spectroscopy, an accurate surface reflectance retrieval is needed to derive relevant physical variables for land cover mapping, soil, and vegetation monitoring. One challenge is to deal with tree shadows using atmospheric correction models if the tree crown transmittance Tc is not properly taken into account. This requires knowledge of the complex radiation mechanisms that occur in tree crowns, which can be provided by coupling the physical modeling of canopy radiative transfer codes (here DART) and the 3D representations of trees. First in this study, a sensitivity analysis carried out on DART simulations with an empirical 3D tree model led to a statistical regression predicting Tc from the tree leaf area index (LAI) and the solar zenith angle with good performances (RMSE ≤ 4.3% and R2 ≥ 0.91 for LAI ≤ 4 m2.m−2). Secondly, more realistic 3D voxel-grid tree models derived from terrestrial LiDAR measurements over two trees were considered. The comparison of DART-simulated Tc from these models with the previous predicted Tc over 0.4–2.5 µm showed three main sources of inaccuracy quoted in order of importance: (1) the global tree geometry shape (mean bias up to 21.5%), (2) the transmittance fraction associated to multiple scattering, Tscat (maximum bias up to 13%), and (3) the degree of realism of the tree representation (mean bias up to 7.5%). Results showed that neglecting Tc leads to very inaccurate reflectance retrieval (mean bias > 0.04), particularly if the background reflectance is high, and in the near and shortwave infrared – NIR and SWIR – due to Tscat. The transmittance fraction associated to the non-intercepted transmitted light, Tdir, can reach up to 95% in the SWIR, and Tscat up to 20% in the NIR. Their spatial contributions computed in the tree shadow have a maximum dispersion of 27% and 8% respectively. Investigating how to approximate Tdir and Tscat spectral and spatial variability along with the most appropriate tree 3D modeling is crucial to improve reflectance retrieval in tree shadows when using atmospheric correction models.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3