Effects of Mixture Mode on the Canopy Bidirectional Reflectance of Coniferous–Broadleaved Mixed Plantations

Author:

He Zijing,Lin Simei,Wen Kunjian,Hao Wenqian,Chen Ling

Abstract

One of the main initiatives for China to achieve the goal of being carbon neutral before 2060 is transforming monocultures into mixed plantations in subtropical China, because mixed forests possess a higher quality than monocultures in various ways. Very high spatial resolution (VHR) satellite imagery is very promising to precisely monitor the transformation process under the premise of clarifying the canopy reflectance anisotropy of mixed plantations. However, it is almost impossible to understand the canopy reflectance anisotropy of mixed plantations with real satellite data due to the extreme lack of multiangular VHR satellite images. In this study, the effects of the mixture mode on the canopy bidirectional reflectance factor (BRF) were comprehensively analyzed with simulated VHR images. The three-dimensional (3D) Discrete Anisotropic Radiative Transfer model (DART) was used to construct a pure coniferous scene, a pure broadleaved scene, and 27 coniferous–broadleaved mixed plantation scenes containing 3 mixture patterns (i.e., mixed by single trees, mixed by stripes, and mixed by patches) and 9 mixing proportions (i.e., from 10% to 90% with the interval of 10%), and to simulate red (R) and near-infrared (NIR) VHR images for these 3D scenes at both the solar principal plane (SPP) and perpendicular plane (PP) under different solar-viewing geometries. Negative correlations were generally found between the canopy BRF and the ratio of conifers in a mixed stand. The anisotropy of conifer dominated plantations is more prominent than broadleaf dominated plantations, especially for the single tree mixture. Although the level of anisotropy is much lower for PP than SPP, it should not be ignored, especially for the R band. Observations under large viewing zenith angles at PP are more preferred to study the effect of mixing proportions, followed by forward observations at SPP. The R band image has higher potential to distinguish mixture patterns for broadleaf-dominated situations, while the NIR band image has a higher potential for conifer-dominated situations. Furthermore, the canopy BRF generally increases with the solar zenith angle, and one meter can be considered as the optimal spatial resolution for the optical monitoring of the mixture mode. The findings of the current study add some valuable theoretical knowledge for the accurate monitoring of coniferous–broadleaved mixed plantations with VHR imagery.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Forestry

Reference57 articles.

1. National Forestry and Grassland Administration (2019). China Forest Resources Report (2014–2018), China Forestry Publishing House.

2. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region;Proc. Natl. Acad. Sci. USA,2014

3. National Forestry and Grassland Administration (2017). The 13th Five-Year Plan for Forest Quality Improvement Project of China (2016–2020), China Forestry Publishing House.

4. National Forestry and Grassland Administration (2016). The National Forest Management Planning of China (2016–2050), China Forestry Publishing House.

5. Carbon and nitrogen pools in Chinese fir and evergreen broadleaved forests and changes associated with felling and burning in mid-subtropical China;For. Ecol. Manag.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3