TREE CROWN DELINEATION ON UAV IMAGERY USING COMBINATION OF MACHINE LEARNING ALGORITHMS WITH MAJORITY VOTING

Author:

Hosingholizade A.,Erfanifard Y.,Alavipanah S. K.,Latifi H.,Jouybari-Moghaddam Y.

Abstract

Abstract. Crown area is one of the key parameters in determining tree growth and an important basis for estimation of biophysical characteristics at single-tree levels in natural and man-made forests. Therefore, the present study was aimed to improve the estimation of crown area on unmanned aerial vehicle (UAV) data using a novel method in a Pinus eldarica man-made forest. The UAV-based RGB images with spatial resolution of 2 cm were acquired from the study area and then resampled to four pixel sizes of 10, 30, 50 and 70 cm. The resampled images were classified by three methods, i.e., Support vector machine (SVM), Random forest (RF), and Artificial neural network (ANN), which are all ensemble (bagging) classification methods. In the next step, the maps of three classification methods for each pixel size were combined by majority voting algorithm at pixel level. The results showed the robustness of ANN in all pixel sizes compared to RF and SVM. Additionally, the combination of the machine learning method by majority voting algorithms had significantly improved the accuracy of P. eldarica crown delineation and its area estimation on the UAV orthoimages with the investigated pixel sizes.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3