Abstract
The aspiration these days is to apply rapid methods for parallel analysis of bacteriome and resistome of food samples to increase food safety and prevent antibiotic resistance genes (ARGs) spreading. In this work, we used nanopore sequencing (NS) to determine the diversity and dynamics of the microbiome and resistome in two types of bean sprouts. We proved that NS provided an easy, quick, and reliable way to identify the microbiome and resistome of a food sample also. The species diversity obtained by NS and by cultivation methods with MALDI-TOF MS identification was comparable. In both samples, before and after cultivation (30 °C, 48 h), the dominant part of bacteriome formed Gammaproteobacteria (Enterobacteriaceae, Erwiniaceae, Pseudomonadaceae, Moraxellaceae) and then Firmicutes (Streptococcaceae). The diversity and abundance of single ARGs groups were comparable for both samples despite bacteriome differences. More than 50% of the detected ARGs alignments were mutations conferring resistance to aminoglycosides (16S rRNA), resistance to fluoroquinolones (gyrA, gyrB, parC, parD) and elfamycin (EF-Tu). ARGs encoding efflux pumps formed more than 30% of the detected alignments. Beta-lactamases were represented by many variants, but were less abundant.
Funder
grant of Specific university research
Subject
Virology,Microbiology (medical),Microbiology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献