Abstract
Myxobacteria are unique predatory microorganisms with a distinctive social lifestyle. These taxa play key roles in the microbial food webs in different ecosystems and regulate the community structures of soil microbial communities. Compared with conditions under conventional management, myxobacteria abundance increases in the organic soil, which could be related to the presence of abundant myxobacteria in the applied compost manure during organic conditions. In the present study,16S rRNA genes sequencing technology was used to investigate the community profile and drivers of predatory myxobacteria in four common compost manures. According to the results, there was a significant difference in predatory myxobacteria community structure among different compost manure treatments (p < 0.05). The alpha-diversity indices of myxobacteria community under swine manure compost were the lowest (Observed OTU richness = 13.25, Chao1 = 14.83, Shannon = 0.61), and those under wormcast were the highest (Observed OTU richness = 30.25, Chao1 = 31.65, Shannon = 2.62). Bacterial community diversity and Mg2+ and Ca2+ concentrations were the major factors influencing the myxobacteria community under different compost manure treatments. In addition, organic carbon, pH, and total nitrogen influenced the community profile of myxobacteria in compost manure. The interaction between myxobacteria and specific bacterial taxa (Micrococcales) in compost manure may explain the influence of bacteria on myxobacteria community structure. Further investigations on the in-situ community profile of predatory myxobacteria and the key microorganism influencing their community would advance our understanding of the community profile and functions of predatory microorganisms in the microbial world.
Subject
Virology,Microbiology (medical),Microbiology
Reference55 articles.
1. PREDATOR DIVERSITY AND TROPHIC INTERACTIONS
2. Bacterial predation: 75 years and counting!
3. By their genes ye shall know them: genomic signatures of predatory bacteria
4. Myxobacteria: Moving, Killing, Feeding, and Surviving Together;José;Front. Microbiol.,2016
5. Micropredator niche differentiation between bulk soil and rhizosphere of an agricultural soil depends on bacterial prey;Lu;FEMS Microbiol. Ecol.,2017
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献