Biogeographical distribution and community assembly of Myxococcota in mangrove sediments

Author:

Zou Dayu,Zhang Cuijing,Liu Yang,Li Meng

Abstract

Abstract Background Myxococcota, characterized by their distinct social lifestyles, are widely distributed micro-predators in global sediments. They can feed on a wide range of bacterial, archaeal, and fungal prey. Myxococcota are capable of producing diverse secondary metabolites, playing key roles in microbial food webs, and regulating the microbial community structures in different ecosystems. However, Myxococcota are rarely pure cultured due to the challenging and stringent culturing conditions. Their natural distribution, niche differentiation, and predator–prey relationships in a specific habitat are poorly understood. Results In this study, we conducted a comprehensive analysis of the 16S rRNA gene sequence data from public databases and our collection. We compared the abundance, diversity, and distribution patterns of Myxococcota in various habitats, with a specific focus on mangroves. We found that Myxococcota accounted for 1.45% of the total prokaryotes in global sediments based on the abundance of 16S rRNA genes. Myxococcota are abundant and diverse in mangrove sediments. They tend to be more generalistic in mangroves than in other habitats due to their wide niche breadth. Besides, the deterministic processes (variable selection) influenced the assembly of mangrove Myxococcota communities significantly more than stochastic processes. Further, we determined that environmental factors explained a greater amount of total community variation in mangrove Myxococcota than geographical variables (latitude and sediment depth). In the end, through the analysis of microbial co-occurrence networks, Myxococcota emerges as a key component and functions as a connector in the mangrove microbial community. Conclusions Our study enhances comprehension of mangrove Myxococcota's biogeography, assembly patterns, driving factors, and co-occurrence relationships, as well as highlights their unique niche and ecological importance in mangrove sediments.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3