Grazing intensity alters network complexity and predator–prey relationships in the soil microbiome

Author:

Camuy-Vélez Lennel A.1ORCID,Banerjee Samiran1ORCID,Sedivec Kevin23

Affiliation:

1. Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA

2. School of Natural Resource Science, North Dakota State University, Fargo, North Dakota, USA

3. Central Grasslands Research Extension Center, North Dakota State University, Streeter, North Dakota, USA

Abstract

ABSTRACT Grasslands are recognized as important reservoirs of soil biodiversity. Livestock grazing is implemented as a grassland management strategy to improve soil quality and enhance plant diversity. Soil microbial communities play a pivotal role in grassland ecosystems, so it is important to examine whether grazing practices affect the soil microbiome. Previous studies on grazing have primarily focused on bacteria and fungi, overlooking an important group—protists. Protists are vital in soil microbiomes as they drive nutrient availability and trophic interactions. Determining the impact of grazing on protists and their relationships with bacterial and fungal communities is important for understanding soil microbiome dynamics in grazed ecosystems. In this study, we investigated soil bacterial, fungal, and protist communities under four grazing levels: no grazing, moderate-use grazing, full-use grazing, and heavy-use grazing. Our results showed that heavy grazing led to a greater diversity of protists with specific groups, such as Discoba and Conosa, increasing in abundance. We also found strong associations between protist and bacterial/fungal members, indicating their intricate relationships within the soil microbiome. For example, the abundance of predatory protists increased under grazing while arbuscular mycorrhizal fungi decreased. Notably, arbuscular mycorrhizae were negatively associated with predatory groups. Furthermore, we observed that microbial network complexity increased with grazing intensity, with fungal members playing an important role in the network. Overall, our study reports the impact of temporal grazing intensity on soil microbial dynamics and highlights the importance of considering protist ecology when evaluating the effects of grazing on belowground communities in grassland ecosystems. IMPORTANCE The significance of this study lies in its exploration of the effects of temporal grazing intensity on the dynamics of the soil microbiome, specifically focusing on the often-neglected role of protists. Our findings provide insights into the complex relationships between protists, bacteria, and fungi, emphasizing their impact on trophic interactions in the soil. Gaining a better understanding of these dynamics is essential for developing effective strategies for grassland management and conservation, underscoring the importance of incorporating protist ecology into microbiome studies in grasslands.

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3