Identification and Subtyping of Salmonella Isolates Using Matrix-Assisted Laser Desorption–Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF)

Author:

Persad Anil K.ORCID,Fahmy Hanan A.,Anderson Nicholas,Cui Jing,Topalcengiz Zeynal,Jeamsripong Saharuetai,Spanninger Patrick M.,Buchanan Robert L.,Kniel Kalmia E.,Jay-Russell Michele T.ORCID,Danyluk Michelle D.,Rajashekara GireeshORCID,LeJeune Jeffrey T.

Abstract

Subtyping of bacterial isolates of the same genus and species is an important tool in epidemiological investigations. A number of phenotypic and genotypic subtyping methods are available; however, most of these methods are labor-intensive and time-consuming and require considerable operator skill and a wealth of reagents. Matrix-Assisted Laser Desorption–Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF), an alternative to conventional subtyping methods, offers a rapid, reproducible method for bacterial identification with a high sensitivity and specificity and at minimal cost. The purpose of this study was to determine the feasibility of using MALDI-TOF to differentiate between six Salmonella serovars recovered from experimental microcosms inoculated with known strains of Salmonella. Following the establishment of a MALDI-TOF reference library for this project, the identity of 843 Salmonella isolates recovered from these microcosms was assessed using both MALDI-TOF and conventional methods (serotyping/PCR). All 843 isolates were identified as being Salmonella species. Overall, 803/843 (95%) of these isolates were identified similarly using the two different methods. Positive percent agreement at the serovar level ranged from 79 to 100%, and negative percent agreement for all serovars was greater than 98%. Cohen’s kappa ranged from 0.85 to 0.98 for the different serovars. This study demonstrates that MALDI-TOF is a viable alternative for the rapid identification and differentiation of Salmonella serovars.

Funder

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3