Mineral Biofortification and Growth Stimulation of Lentil Plants Inoculated with Trichoderma Strains and Metabolites

Author:

Marra RobertaORCID,Lombardi NadiaORCID,Piccolo Alessandro,Bazghaleh Navid,Prashar Pratibha,Vandenberg AlbertORCID,Woo SheridanORCID

Abstract

Biofortification of crops via agricultural interventions represents an excellent way to supply micronutrients in poor rural populations, who highly suffer from these deficiencies. Soil microbes can directly influence plant growth and productivity, e.g., by contrasting plant pathogens or facilitating micronutrient assimilation in harvested crop-food products. Among these microbial communities, Trichoderma fungi are well-known examples of plant symbionts widely used in agriculture as biofertilizers or biocontrol agents. In this work, eleven Trichoderma strains and/or their bioactive metabolites (BAMs) were applied to lentil plants to evaluate their effects on plant growth and mineral content in greenhouse or field experiments. Our results indicated that, depending upon the different combinations of fungal strain and/or BAM, the mode of treatment (seed and/or watering), as well as the supplementary watering with solutions of iron (Fe) and zinc (Zn), the mineral absorption was differentially affected in treated plants compared with the water controls. In greenhouse conditions, the largest increase in Fe and Zn contents occurred when the compounds were applied to the seeds and the strains (in particular, T. afroharzianum T22, T. harzianum TH1, and T. virens GV41) to the soil. In field experiments, Fe and Zn contents increased in plants treated with T. asperellum strain KV906 or the hydrophobin HYTLO1 compared with controls. Both selected fungal strains and BAMs applications improved seed germination and crop yield. This biotechnology may represent an important challenge for natural biofortification of crops, thus reducing the risk of nutrient deficiencies.

Funder

Ministry of Education, Universities and Research

MISE

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3