Impact of Seed Inoculation with Trichoderma afroharzianum Strains on Plant Growth, Root Morphology, and Leaf Phenolic Content in Hemp (Cannabis sativa L.) at Early Growth Stages

Author:

Iannucci Anna1,Beleggia Romina1ORCID,Galletti Stefania2ORCID,Pecchioni Nicola1,Trono Daniela1ORCID

Affiliation:

1. Research Centre for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA), S.S. 673, Km 25,200, 71122 Foggia, Italy

2. Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics (CREA), Via di Corticella 133, 40128 Bologna, Italy

Abstract

Industrial hemp (Cannabis sativa L.) is receiving increasing attention for its multiple end-uses; therefore, an improvement in its production is needed to meet the increased demand. In the present study, the effect of seed inoculation with two Trichoderma afroharzianum strains, T-AA and T-22, on plant growth and root morphology of hemp plants at sixth-leaf (S6) and tenth-leaf (S10) stages was assessed for two consecutive years (2020 and 2021). In addition, the ability of the two strains to enhance the accumulation of phenolic compounds in hemp leaves was also evaluated. The results obtained revealed the ability of T-22 to improve the growth and root morphology of hemp plants both in 2020 and 2021, although with different impact, probably ascribable to the different weather conditions in the two years. In 2020, the positive effects of T-22 were detected at S10 stage with significant increases in the shoot and root length (38% and 17%, respectively) and dried biomass (35% and 30%, respectively) compared to untreated plants. The total root surface area and the number of tips, forks, and crossings also increased significantly (24–36%) at this stage. In 2021, significant increases in the shoot length and dried biomass (40% and 30%, respectively) were observed at S6 stage, whereas root length and dried biomass increased significantly at S6 (55% and 47%, respectively) and S10 stage (121% and 40%, respectively). Significant increases in the total surface area and volume, as well as in the number of tips, forks, and crossings were also observed at both S6 and S10 stage (50–63% and 105–187%, respectively). Interestingly, in both years and at both stages, the two strains induced significant increases in the leaf accumulation of phenolic compounds and the antioxidant activity, which were greater in T-22- compared to T-AA-treated plants (18–102% and 13–34%, respectively). The results are discussed in light of the potential practical applications of T-22 as a biostimulant of hemp plant growth under favorable and unfavorable environmental conditions, and of both strains as promising tools for the improvement of the leaves’ economic value as a source of health-promoting compounds.

Funder

European Regional Development Fund

Publisher

MDPI AG

Reference60 articles.

1. (2023, September 04). EU Regulation No. 2021/2115 of the European Parliament and of the Council of 2 December 2021 Establishing Rules on Support for Strategic Plans to Be Drawn up by Member States under the Common Agricultural Policy (CAP Strategic Plans) and Financed by the European Agricultural Guarantee Fund (EAGF) and by the European Agricultural Fund for Rural Development (EAFRD) and Repealing Regulations (EU) No 1305/2013 and (EU) No 1307/2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32021R2115.

2. Viskovíc, J., Zheljazkov, V.D., Sikora, V., Noller, J., Latkovíc, D., Ocamb, C.M., and Koren, A. (2023). Industrial Hemp (Cannabis sativa L.) Agronomy and Utilization: A Review. Agronomy, 13.

3. Ferrarini, A., Fracasso, A., Spini, G., Fornasier, F., Taskin, E., Fontanella, M.C., Beone, G.M., Amaducci, S., and Puglisi, E. (2021). Bioaugmented phytoremediation of metal-contaminated soils and sediments by hemp and giant reed. Front. Microbiol., 12.

4. Hemp as a potential raw material toward a sustainable world: A review;Ahmed;Heliyon,2022

5. Cannabis sativa: The plant of the thousand and one molecules;Andre;Front. Plant Sci.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3