Biogeographical Patterns and Assembly of Bacterial Communities in Saline Soils of Northeast China

Author:

Liang XiaolongORCID,Wang Xiaoyu,Zhang Ning,Li BingxueORCID

Abstract

Increasing salinity undermines soil fertility and imposes great threats to soil ecosystem productivity and ecological sustainability. Microbes with the ability to adapt to environmental adversity have gained increasing attention for maintenance and restoration of the salt-affected soil ecosystem structure and functioning; however, the characterization of microbial communities in saline–sodic soils remains limited. This study characterized the bacterial community composition and diversity in saline–sodic soils along a latitude gradient across Northeast China, aiming to reveal the mechanism of physicochemical and geographic characteristics shaping the soil bacterial communities. Our results showed that the bacterial community composition and diversity were significantly impacted by soil pH, electrical conductivity, Na+, K+, Cl−, and CO32−. Significant differences in bacterial diversity were revealed along the latitude gradient, and the soil factors accounted for 58.58% of the total variations in bacterial community composition. Proteobacteria, Actinobacteria, Gemmatimonadetes, Chloroflexi, and Bacteroidetes were dominant across all samples. Actinobacteria and Gemmatimonadetes were significantly enriched in high soil sodicity and salinity, while Acidobacteria and Proteobacteria were suppressed by high pH and salt stress in the saline–sodic soils. Increase in soil pH and salinity significantly decreased bacterial species richness and diversity. Community composition analysis indicated that bacterial taxonomic groups (e.g., Bacillus, Egicoccus, Truepera, Halomonas, and Nitrolancea) that may adapt well to high salinity were greatly enriched in the examined soils. The findings collectively evidenced that bacterial community composition and diversity in a broad biographic scale were determined by niche-based environmental characteristics and biotic interactions. The profiling of the soil bacterial communities along the latitude gradient will also provide a basis for a better understanding of the salt-affected soil ecosystem functioning and restoration of these soil ecosystems.

Funder

Natural Science Foundation Guidance Project of Liaoning

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3