Characteristics of Bacterial Community Structure and Function in Artificial Soil Prepared Using Red Mud and Phosphogypsum

Author:

Liu Yong1ORCID,Yang Zhi1,Zhang Lishuai1,Wan Hefeng2,Deng Fang1,Zhao Zhiqiang1,Wang Jingfu3ORCID

Affiliation:

1. College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China

2. Guizhou Institute of Biology, Guiyang 550009, China

3. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (IGCAS), Guiyang 550081, China

Abstract

The preparation of artificial soil is a potential cooperative resource utilization scheme for red mud and phosphogypsum on a large scale, with a low cost and simple operation. The characteristics of the bacterial community structure and function in three artificial soils were systematically studied for the first time. Relatively rich bacterial communities were formed in the artificial soils, with relatively high abundances of bacterial phyla (e.g., Cyanobacteria, Proteobacteria, Actinobacteriota, and Chloroflexi) and bacterial genera (e.g., Microcoleus_PCC-7113, Rheinheimera, and Egicoccus), which can play key roles in various nutrient transformations, resistance to saline–alkali stress and pollutant toxicity, the enhancement of various soil enzyme activities, and the ecosystem construction of artificial soil. There were diverse bacterial functions (e.g., photoautotrophy, chemoheterotrophy, aromatic compound degradation, fermentation, nitrate reduction, cellulolysis, nitrogen fixation, etc.), indicating the possibility of various bacteria-dominated biochemical reactions in the artificial soil, which can significantly enrich the nutrient cycling and energy flow and enhance the fertility of the artificial soil and the activity of the soil life. The bacterial communities in the different artificial soils were generally correlated with major physicochemical factors (e.g., pH, OM, TN, AN, and AP), as well as enzyme activity factors (e.g., S-UE, S-SC, S-AKP, S-CAT, and S-AP), which comprehensively illustrates the complexity of the interaction between bacterial communities and environmental factors in artificial soils, and which may affect the succession direction of bacterial communities, the quality of the artificial soil environment, and the speed and direction of the development and maturity of the artificial soil. This study provides an important scientific basis for the synergistic soilization of two typical industrial solid wastes, red mud and phosphogypsum, specifically for the microbial mechanism, for the further evolution and development of artificial soil prepared using red mud and phosphogypsum.

Funder

Guizhou Provincial Key Technology R&D Program

National Natural Science Foundation of China

Sixth Batch of Guizhou Province High-Level Innovative Talent Training Programs

Initiated Funding Projects for Introduced Talent of Guiyang University

Guizhou Provincial Science and Technology Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3