Moso Bamboo Invasion Reshapes Community Structure of Denitrifying Bacteria in Rhizosphere of Alsophila spinulosa

Author:

Zuo Youwei,Qu Huanhuan,Xia Changying,Zhang Huan,Zhang Jiahui,Deng HongpingORCID

Abstract

The uncontrolled invasion of moso bamboo (Phyllostachys pubescens) dramatically alters soil nitrogen cycling and destroys the natural habitat of Alsophila spinulosa. Nevertheless, no clear evidence points out the role of denitrifying bacteria in the invasion of bamboo into the habitat of A. spinulosa. In the present study, we found that low (importance value 0.0008), moderate (0.6551), and high (0.9326) bamboo invasions dramatically altered the underground root biomass of both P. pubescens and A. spinulosa. The root biomass of A. spinulosa was maximal at moderate invasion, indicating that intermediate disturbance might contribute to the growth and survival of the colonized plant. Successful bamboo invasion significantly increased rhizospheric soil available nitrogen content of A. spinulosa, coupled with elevated denitrifying bacterial abundance and diversity. Shewanella, Chitinophaga, and Achromobacter were the primary genera in the three invasions, whereas high bamboo invasion harbored more denitrifying bacteria and higher abundance than moderate and low invasions. Further correlation analysis found that most soil denitrifying bacteria were positively correlated with soil organic matter and available nitrogen but negatively correlated with pH and water content. In addition, our findings illustrated that two denitrifying bacteria, Chitinophaga and Sorangium, might be essential indicators for evaluating the effects of bamboo invasion on the growth of A. spinulosa. Collectively, this study found that moso bamboo invasion could change the nitrogen cycling of colonized habitats through alterations of denitrifying bacteria and provided valuable perspectives for profound recognizing the invasive impacts and mechanisms of bamboo expansion.

Funder

Chongqing Technology Innovation and Application Development Special Key Project - Research and Application of Typical Damaged Ecosystem Restoration Technology in Nature Reserve

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3