Distinctive patterns of soil microbial community during forest ecosystem restoration in southwestern China

Author:

Zuo Youwei12,Liu Xiangning12,Ma Te3,Zeng Yulian12,Li Wenqiao12,Xia Changying12,Zhang Huan12,Li Zongfeng12,Deng Hongping124ORCID

Affiliation:

1. Center for Biodiversity Conservation and Utilization, Key Laboratory of Eco‐Environment in the Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences Southwest University Chongqing PR China

2. Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences Southwest University Chongqing PR China

3. High School Affiliated to Southwest University Chongqing China

4. Division of Plant Science and Technology University of Missouri Columbia United States

Abstract

AbstractMicroorganisms are essential in soil biogeochemical processes and vegetation establishment. Nonetheless, investigating predictable patterns in the microbial structure during forest restoration damaged by natural or human factors in southwestern China is still limited. Hence, the study intended to explore the effects of forest restoration damaged by illegal construction, abandoned mines, and meteorological disasters on the microbial structure and its consequence on ecosystem functioning. The results uncovered that soil and plant attributes in the restoration forests damaged by illegal construction were similar to the natural community. Furthermore, the alpha diversity indexes were higher in the restoration forests damaged by human factors than in the natural community. Co‐occurrence network analysis identified hub bacterial (e.g., Roseiarcus and Comamonas) and fungal (e.g., Exophiala and Botryotrichum) taxa, proving densely connected interactions with other microorganisms. Restoration forests damaged by illegal construction harbored beneficial genera belonging to Proteobacteria (Nordella, Xanthobacteraceae, and Sphingomonas) and Basidiomycota (Panaeolus, Psilocybe, and Sebacina), whereas restoration forests damaged by abandoned mines presented specialized bacteria involved in dark sulfur oxidation and ureolysis. Correlation analysis showed that soil properties, especially water content and pH, were the dominant factors affecting the microbial communities. Tree and shrub alpha diversities were significantly related to Chloroflexi in the natural community, and herbaceous richness was remarkably related to Proteobacteria and Mortierellomycota in the restoration forest damaged by human factors. Collectively, this comprehensive analysis generates novel insights to explore the contrasting responses of microbial communities during the process of restoration and provides essential microbial indicators for habitat restoration in southwestern China.

Publisher

Wiley

Subject

Soil Science,General Environmental Science,Development,Environmental Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3